Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Pharm Pharm Sci ; 24: 227-236, 2021.
Article in English | MEDLINE | ID: covidwho-1248472

ABSTRACT

PURPOSE: Remdesivir and its active metabolite are predominantly eliminated via renal route; however, information regarding renal uptake transporters is limited. In the present study, the interaction of remdesivir and its nucleoside analog GS-441524 with OATP4C1 was evaluated to provide the detailed information about its renal handling. METHODS: We used HK-2 cells, a proximal tubular cell line derived from normal kidney, to confirm the transport of remdesivir and GS-441524. To assess the involvement of OATP4C1 in handling remdesivir and GS-441524, the uptake study of remdesivir and GS-441524 was performed by using OATP4C1-overexpressing Madin-Darby canine kidney II (MDCKII) cells. Moreover, we also evaluated the IC50 and Ki value of remdesivir. RESULTS: The time-dependent remdesivir uptake in HK-2 cells was observed. The results of inhibition study using OATs and OCT2 inhibitors and OATP4C1 knockdown suggested the involvement of renal drug transporter OATP4C1. Remdesivir was taken up by OATP4C1/MDCKII cells. OATP4C1-mediated uptake of remdesivir increased linearly up to 10 min and reached a steady state at 30 min. Remdesivir inhibited OATP4C1-mediated transport in a concentration-dependent manner with the IC50 and apparent Ki values of 42 ± 7.8 µM and 37 ± 6.9 µM, respectively. CONCLUSIONS: We have provided novel information about renal handling of remdesivir. Furthermore, we evaluated the potential drug interaction via OATP4C1 by calculating the Ki value of remdesivir. OATP4C1 may play a pivotal role in remdesivir therapy for COVID-19, particularly in patients with kidney injury.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/metabolism , COVID-19 Drug Treatment , Furans/metabolism , Kidney Tubules, Proximal/metabolism , Organic Anion Transporters/metabolism , Pyrroles/metabolism , Triazines/metabolism , Adenosine/analogs & derivatives , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/therapeutic use , Alanine/metabolism , Alanine/therapeutic use , Animals , Antiviral Agents/therapeutic use , COVID-19/metabolism , Cell Line , Dogs , Dose-Response Relationship, Drug , Drug Approval , Furans/therapeutic use , Humans , Kidney/drug effects , Kidney/metabolism , Kidney Tubules, Proximal/drug effects , Madin Darby Canine Kidney Cells , Organic Anion Transporters/antagonists & inhibitors , Pyrroles/therapeutic use , Triazines/therapeutic use
2.
Kidney Int ; 98(6): 1502-1518, 2020 12.
Article in English | MEDLINE | ID: covidwho-1023697

ABSTRACT

COVID-19 morbidity and mortality are increased via unknown mechanisms in patients with diabetes and kidney disease. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Because ACE2 is a susceptibility factor for infection, we investigated how diabetic kidney disease and medications alter ACE2 receptor expression in kidneys. Single cell RNA profiling of kidney biopsies from healthy living donors and patients with diabetic kidney disease revealed ACE2 expression primarily in proximal tubular epithelial cells. This cell-specific localization was confirmed by in situ hybridization. ACE2 expression levels were unaltered by exposures to renin-angiotensin-aldosterone system inhibitors in diabetic kidney disease. Bayesian integrative analysis of a large compendium of public -omics datasets identified molecular network modules induced in ACE2-expressing proximal tubular epithelial cells in diabetic kidney disease (searchable at hb.flatironinstitute.org/covid-kidney) that were linked to viral entry, immune activation, endomembrane reorganization, and RNA processing. The diabetic kidney disease ACE2-positive proximal tubular epithelial cell module overlapped with expression patterns seen in SARS-CoV-2-infected cells. Similar cellular programs were seen in ACE2-positive proximal tubular epithelial cells obtained from urine samples of 13 hospitalized patients with COVID-19, suggesting a consistent ACE2-coregulated proximal tubular epithelial cell expression program that may interact with the SARS-CoV-2 infection processes. Thus SARS-CoV-2 receptor networks can seed further research into risk stratification and therapeutic strategies for COVID-19-related kidney damage.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Diabetic Nephropathies/metabolism , Kidney Tubules, Proximal/metabolism , SARS-CoV-2/metabolism , Adult , Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19/complications , COVID-19/virology , Case-Control Studies , Diabetic Nephropathies/drug therapy , Female , Gene Expression Profiling , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Kidney Tubules, Proximal/drug effects , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL